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Abstract. Several recent works point out that the crowd of small unobservable earthquakes (with magni-
tudes below the detection threshold md) may play a significant and perhaps dominant role in triggering
future seismicity. Using the ETAS branching model of triggered seismicity, we apply the formalism of gen-
erating probability functions to investigate how the statistical properties of observable earthquakes differ
from the statistics of all events. The ETAS (epidemic-type aftershock sequence) model assumes that each
earthquake can trigger other earthquakes (“aftershocks”). An aftershock sequence results in this model
from the cascade of aftershocks of each past earthquake. The triggering efficiency of earthquakes is as-
sumed to vanish below a lower magnitude limit m0, in order to ensure the convergence of the theory and
may reflect the physics of state-and-velocity frictional rupture. We show that, to a good approximation,
the statistical distribution of seismic rates of events with magnitudes above md generated by an ETAS
model with branching ratio n is the same as that of events generated by another ETAS model with effective
parameter n(md). Our present analysis thus confirms, for the full statistical (time-independent or large
time-window approximation) properties, the results obtained previously by one of us and Werner, based
solely on the average seismic rates (the first-order moment of the statistics). Our analysis also demon-
strates that this correspondence is not exact, as there are small corrections which can be systematically
calculated, in terms of additional contributions that can be mapped onto a different branching model. We
also show that this approximate correspondence of the ETAS model onto itself obtained by changing m0

into md, and n into n(md) holds only with respect to its statistical properties and not for all its space-time
properties.

PACS. 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions – 91.30.Dk
Seismicity – 02.50.Ey Stochastic processes

1 Introduction

In the last few years, physicists’ interest for the space-
time organization of seismicity in different regions of the
world has spurred. This recent burst of attention is prob-
ably due to the introduction of new diagnostic tools ap-
plied to earthquake catalogs [1–19] and to improved in-
sights from cartoon models of earthquakes [20–25]. The
first class of papers in particular suggest to re-examine
the standard statistical properties of earthquakes, usually
documented under the following distinct power law and
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fractal properties: (i) the Gutenberg-Richter distribution
∼1/E1+β (with β ≈ 2/3) of earthquake energies E [26];
(ii) the Omori law ∼1/tp (with p ≈ 1 for large earth-
quakes) of the rate of aftershocks as a function of time t
since a mainshock [27]; (iii) the productivity law ∼Ea

(with a ≈ 2/3) giving the number of earthquakes triggered
by an event of energy E [28]; (iv) the power law distribu-
tion ∼1/L2 of fault lengths L [29]; (v) the fractal struc-
ture of fault networks [30] and of the spatial organization
of earthquake epicenters [31]; (vi) the distribution 1/s2+δ

(with δ ≥ 0) of seismic stress sources s in earthquake focal
zones due to past earthquakes [32]. Specifically, the sta-
tistical analysis based on (a) coarse-grained scaling ansatz
[1,2,7–9,13] (b) entropic methods [4,15], and (c) network



444 The European Physical Journal B

methods [6,10–12] suggest that the above standard seis-
mological descriptions [26–32] are incomplete. It is not
clear however what should be the correct physical model.
Several papers have however questioned the novelty of the
insights derived from these approaches [2,5,16].

The present authors are among those who have studied
how the standard seismological laws [26–32] (in particu-
lar the laws (i)–(iii) mentioned above) could actually go
a long way towards explaining most of the empirical phe-
nomenology of seismicity, including the supposed anoma-
lous or “novel” scaling laws proposed by the above quoted
physicists (see for instance [33–38]). In this series of pa-
pers, we have developed a consistent statistical description
of seismicity using models of triggered seismicity, which al-
lows one to make quantitative predictions of observables
that can be compared with empirical data. The simplest
class of models of triggered seismicity combines the above
mentioned Gutenberg-Richter (i), Omori (ii), and produc-
tivity laws (iii) which can be applied to a fractal spatial
geometry of earthquake epicenters (v) [38]. The funda-
mental physical ingredient introduced in the construction
of these models of triggered seismicity is that each earth-
quake can trigger other earthquakes and an earthquake se-
quence results in these models from the cascade of events
triggered by past earthquakes. The usual notions of fore-
shocks, mainshocks and aftershocks lose their specificity as
any earthquake can be triggered by previous earthquakes
and may trigger itself subsequent earthquakes. Here, we
continue our study of the general branching process, called
the Epidemic-Type Aftershock Sequence (ETAS) model of
triggered seismicity, introduced by Ogata in the present
form [42] and by Kagan and Knopoff in a slightly differ-
ent form [43] and whose main average statistical prop-
erties are reviewed in [44]. This model has been shown
to constitute a powerful null hypothesis to test against
other models [42]. The ETAS model belongs to a general
class of branching processes [45,46]. It can be viewed as
the monofractal approximation of the more general mul-
tifractal model of triggered seismicity introduced recently
in [24,25], which derives from the physics of thermally ac-
tivated rupture aided by stress.

The physical problem addressed here is the following.
We start from the suggestion [28,47] that small earth-
quakes dominate or are at least equivalent collectively to
large earthquakes in triggering other earthquakes. This
conclusion relies on a combination of empirical evidence
interpreted in the context of models of triggered seismic-
ity such as the ETAS model. Combining the Gutenberg-
Richter law (i) ∝10−bm and the productivity law (iii)
∝10αm, which are both empirically based, and using the
conceptual framework of the ETAS model in which any
earthquake can trigger or be triggered by other earth-
quakes, one obtains the typical number ∝10−(b−α)m of
events triggered by earthquakes of magnitude between m
and m + 1. With the empirical estimates of b ≈ 1 and
0.8 ≤ α ≤ 1 together with the observation that trig-
gered events seem to have magnitudes with only weak
or no relation with the magnitude of the triggering event
(magnitude-independence law) [47] (i.e., large earthquakes

can be triggered by small events), this implies the perhaps
surprising conclusion that, according to the ETAS model,
large earthquakes are triggered more by the swarm of
small previous earthquakes than by preceding large earth-
quakes. This stems from (i) the observation that the num-
ber of small earthquakes increases faster as their magni-
tude decrease than their productivity decreases and (ii)
the assumption that all earthquakes play the same role
(which does not seem to be contradicted by observations).
The conclusion that small earthquakes dominate trigger-
ing is thus intrinsically a collective effect. This picture,
which emphasizes the collective organization of earth-
quakes or “many-body” view, can be contrasted with the
“one-body” or few-body approach of Stein and co-workers
[48,49] which focuses exclusively on how a few large earth-
quakes can promote subsequent shocks at some sites and
inhibit them in others. If indeed the small earthquakes
dominate in the triggering of future events, this begs to
define how small “small” can be, since the smaller the
earthquakes the larger their triggering influence. The ev-
idence that small earthquakes should dominate trigger-
ing is based on the empirical statistics (i) and (iii) es-
tablished for event magnitudes above magnitude 2 or 3
(depending on the completeness of the studied catalogs).
The question of how small “small” amounts to asking how
far in the small magnitude range can the productivity law
and the magnitude-independence law be extrapolated. Be-
cause the Gutenberg-Richter law (i) has been observed
at such small scales as individual dislocation motions, we
know for sure that there must be a lower “ultra-violet”
cut-off magnitude m0 at which the productivity of events
of magnitude smaller than m0 tapers off or vanishes. Oth-
erwise, the factor ∝10−(b−α)m would diverges as m → −∞
(energy goes to zero). Is the ultra-violet cut-off associated
with an atomic scale for rupture? Or are other relevant
scales? This question has been addressed in two recent
papers by M. Werner and one of us [50,51] within the
framework of the ETAS model. Consider a catalog com-
plete for magnitudes above some observational threshold
md, i.e., all earthquakes with magnitudes m ≥ md have
been recorded but smaller earthquakes are not. Noting
that the magnitude md of completeness of a seismic cat-
alog is not in general the same as the magnitude m0 of
the smallest triggering earthquake, reference [50] showed
that bounds for m0 can be obtained from quantitative
fits to observed aftershock sequences. In addition, refer-
ence [51] remarked that, in models of triggered seismicity
and in their estimation from empirical data, the detec-
tion threshold md is commonly equated to the magnitude
m0 of the smallest triggering earthquake. This unjustified
assumption neglects the possibility of shocks below the
detection threshold triggering observable events, a pro-
cess which should dominate according to our previous
discussion. Reference [51] developed a mean field formal-
ism within the ETAS model: by considering the branch-
ing structure of one complete cascade of triggered events,
the catalog of observed events with magnitude above md

was shown to be described by an effective “renormalized”
ETAS model with its lower magnitude cut-off equal to md

but with an apparent branching ratio na (which is the
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apparent fraction of aftershocks in a given catalog) and
an apparent background source Sa, due to the presence
of smaller undetected events capable of triggering larger
events. This result is potentially very important since it
implies that previous estimates of the clustering charac-
teristics of seismicity may significantly underestimate the
true values: for instance, an observed fraction of 55% of
aftershocks is renormalized into a true value of 75% of
triggered events.

The object of the present paper is to extend the
previous mean field treatment to obtain the full earth-
quake statistics using the formalism of generating proba-
bility function (GPF) already developed in [35–38]. In a
sense, the question addressed here is whether the ETAS
model can be renormalized onto itself by moving m0 to
md > m0 (which can be seen as a coarse-graining opera-
tion), that is, is there an effective ETAS model with min-
imum magnitude md and with renormalized parameters,
which describes the observed catalogs? Beyond its interest
and application to earthquakes, this problem is relevant
to a general understanding of coarse-grained properties of
marked branching processes, to which our formalism ap-
plies.

The focus of the paper is on the statistical properties
of clusters in synthetic catalogs generated by the ETAS
model. In its standard formulation, the ETAS model is
defined in terms of the conditional Poisson intensity which
controls the probability that a new earthquake occurs in
the near future. This Poisson intensity is expressed as a
sum of triggering contributions from all past earthquakes.
It would thus seem that clusters cannot be clearly de-
fined since the occurrence of future earthquakes depends
on all past earthquakes and thus all earthquakes are in
this sense linked or clustered together. In fact, it is easy
to show that, due to the linear contribution of past earth-
quakes in the conditional intensity together with the ex-
ponential (Poisson) form of the probability distribution of
waiting times for the next earthquake, the ETAS model is
fundamentally a branching process (see for instance [51]
where this is explicited). As a consequence, an equiva-
lent formulation of the ETAS model amounts to generate
earthquakes according to a specific branching hierarchy of
ancestors and progenies. This remark is actually very use-
ful to generate synthetic earthquake catalogs based on an
algorithm [39] with is much faster than the original rely-
ing on a sum over all past earthquakes which needs to be
re-estimated at each time step [42]. The notion that clus-
ters of earthquakes have a genuine physical meaning in
the ETAS model is further made explicit by the recently
introduced “stochastic reconstruction” method developed
by Zhuang et al. [40,41]. As this method shows, clusters
have a precise statistical meaning.

The organization of the paper is the following. Sec-
tion 2.1 introduces the general formulation of observable
clusters of triggered events using the generating proba-
bility functions (GPF). It also presents a simple intuitive
approximation which will be make rigorous in later sec-
tions. Section 2.2 derives general relations for the effective
branching rates of observable events. Section 2.3 defines

the ETAS model and recalls its main useful properties.
Section 2.4 introduces the GPF for unobservable and ob-
servable aftershocks. Section 2.5 gives the main properties
of the effective branching rates, which recover the previous
analysis of [51] in a slightly different form. Section 2.6 ex-
plains that the present approach and that of [51] are equiv-
alent physically but with a different mathematical formu-
lation. The justification for introducing a physically equiv-
alent but mathematically different formulation here is that
it is more adapted to the calculations of the full statistics
with the GPF formalism. Section 3 presents all our re-
sults on the statistics of observable events in the ETAS
branching model. Section 3.1 derives the general equation
governing the GPF of observable events. Section 3.2 uses
the derivation of the previous section to give quantitative
estimates for the fraction of observable events. Section 3.3
discusses the approximation of self-similarity, correspond-
ing to a renormalization of the ETAS model onto itself
by the change from m0 to md, for its statistical proper-
ties. This self-similarity amounts to say that the statis-
tics of observable events can be deduced entirely from the
statistics of all events under a simple renormalization of
the average branching ratio into an effective value. Sec-
tion 3.4 derives the implications of the self-similar ap-
proximation for the distribution of the numbers of ob-
servable events. Section 3.5 discusses the deviations from
self-similarity and identifies a correction in the form of
a new branching model, which gives rather small correc-
tions to the previously self-similar estimates. Section 3.6
shows that the effective parameter n(md) can be inter-
preted as a normalized branching ratio only for the global
statistical properties of seismic rates, which are time- and
space-independent, but not for the full space and time-
dependent properties. The last section concludes. Finally,
an Appendix presents a brief pedagogical introduction to
the general formalism of generating probability functions
(GPF) and introduces the main formulas useful to follow
the calculations presented below.

2 Definition and properties of effective rate
of observable aftershocks

2.1 General formulation of observable clusters

In this section, we present the general formulation of gen-
erating probability function (GPF) (see the Appendix for
notations and definitions) for marked branching processes
with an observational constraint. Recall that, for general
branching processes such as the ETAS model, the GPF
formalism allows one to calculate the full statistical prop-
erties. Here, the mark associated with an event is its mag-
nitude. The observational constraint is that only events
with magnitude m ≥ md, where md is the observation
threshold, are known, while the process produces events
which can have a lower magnitude, down to a lower trig-
gering cut-off m0.

To get a first feeling of how the observational con-
straint can be taken into account in the GPF formalism,
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consider the case of a large finite time window of size τ
in which we count the number of events and let us use
the approach developed in [36] for the statistics of the
number of such windowed events. The time windows are
considered large if their size is significantly larger than the
typical life-time of the clusters, defined as the sequences
of aftershocks, triggered by single background events (see
[36] for a discussion). In this limit, the statistics of the
total (observable and unobservable) number of events in
a window of size τ is obtained from the generating proba-
bility function (GPF) Θw(z; τ), which obeys the following
equation

Θw(z; τ) = eωτ [Θ(z)−1]. (1)

Θ(z) is the GPF of the number of all the aftershocks trig-
gered by a given source, including the source event itself
and ω is the Poisson intensity of the background sources.
We have shown [35] that Θ(z) has the structure

Θ(z) = zG(z), (2)

where the factor z to the left of G(z) takes into account
the contribution of the background source, while the GPF
G(z) describes the statistics of the number of all after-
shocks within a given cluster. In view of (2), the GPF for
finite time windows given by (1) is the natural generaliza-
tion of the GPF obtained for the Poissonian background
events:

Θb(z; τ) = eωτ(z−1). (3)

Now, the statistics of observable events requires to replace
the GPF Θ(z) in (1) by the GPF Θ(z; md) of the number
of aftershocks (and their sources) whose magnitudes m are
larger than the detection threshold md to obtain

Θw(z; md, τ) = eωτ [Θ(z;md)−1]. (4)

Note that some clusters might have no observable events
at all. This means that there is a non-zero probability

p(md) = Θ(z = 0; md) �= 0 (5)

that the cluster is completely unobservable. The comple-
mentary probability

q(md) = 1 − p(md) = 1 − Θ(0; md) (6)

is the probability that there is at least one observable event
(source or some aftershock) in the cluster under inspec-
tion. In what follows, we refer to a cluster as “observ-
able,” if it contains at least one observable event (with
magnitude m ≥ md). Accordingly, q(md) defined in (6) is
the probability that a cluster is observable; it is also the
fraction of observable clusters.

It is convenient to express the GPF Θ(z; md) in the
form

Θ(z; md) = q(md)Θ̃(z; md) + 1 − q(md), (7)

where

Θ̃(z; md) =
1

q(md)
[Θ(z; md) − Θ(0; md)] (8)

is nothing but the conditional GPF of the number of ob-
servable events within observable clusters. This definition
implies that it has the same structure

Θ̃(z : md) = zG̃(z; md), (9)

as that given by (2) of the GPF Θ(z) of the total number
of events belonging to some cluster. Expression (9) im-
plies that one can treat the observable event which comes
first in time as the “observable source,” and then interpret
G̃(z; md) as the GPF of its observable aftershocks.

Substituting (7) into (4) yields the following represen-
tation for the GPF of the number of observable windowed
events

Θw(z; md, τ) = eω(md)τ [Θ̃(z;md)−1], (10)

where
ω(md) = ωq(md) (11)

is the renormalized intensity of “observable sources,”
which is the same as the intensity of observable clusters
by definition.

There is a physically transparent way to estimate the
probability q(md) that a cluster is observable. It is indeed
always possible to represent q(md) in the form

q(md) = q+(md)Q(md) + q−(md)[1 − Q(md)]. (12)

Here, q+(md) (respectively q−(md)) is the probability that
the cluster is observable under the condition that its gener-
ating source is also observable (respectively unobservable).
In addition, Q(md) is the probability that the source is
observable. Obviously, we have

q+(md) ≡ 1 , q−(md) = 1 − p−(md), (13)

where p−(md) is the probability that all aftershocks trig-
gered by an unobservable event are unobservable. To es-
timate p−(md), we make the assumption that each un-
observable event either triggers only one first-generation
aftershock, with probability ν(md), or does not trigger
any aftershocks with the probability 1 − ν(md). This ap-
proximation is quite reasonable, as can be seen from the
application of the productivity law ∼Ea ∼ 10αm (with
a ≈ 2/3, α ≈ 1): if an event of magnitude m = 7 pro-
duces about 105 observable events on average, an event
of magnitude 2 triggers about 0.1 events on average. In
this example, ν(md) ≈ 0.1 and 1 − ν(md) ≈ 0.9 and the
error in neglecting the possibility for this event to trigger
two aftershocks is of order 0.01. This error becomes even
smaller for smaller unobservable sources.

Suppose additionally that the magnitudes of the trig-
gered aftershocks are statistically independent of each
other. Then, the probability that all aftershocks, triggered
by an unobservable event, are unobservable, is given by

p−(md) 

∞∑

k=0

[1 − ν(md)]νk(md)[1 − Q(md)]k, (14)

where (1 − ν)νk is the geometrical probability that an
unobservable event triggers k aftershocks, while (1 − Q)k
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is the probability that they are all unobservable. After
summation, we obtain

p−(md) 
 1 − ν(md)
1 − ν(md)[1 − Q(md)]

. (15)

Substituting this expression into (13) and then (13) into
(12), we obtain the probability that a cluster is observable
under the form

q(md) 
 Q(md)
1 − ν(md)[1 − Q(md)]

. (16)

In the following, we obtain with the framework of the
ETAS model, a physically transparent relation for the
probability ν(md), which will allow us to obtain an ac-
curate estimation of the probability q(md) given by (16)
and the corresponding renormalized intensity ω(md) of
“observable sources” given by (11). Specifically, the role
of ν(md) is derived in expression (37) below for the GPF
of first-generation aftershocks triggered by unobservable
event.

2.2 Effective observable aftershocks rate

Before turning to the specifics of the ETAS model and its
statistics of observable events, it is useful to discuss the
properties of the average rate of general branching pro-
cesses. The results obtained in this section recover those
obtained in [51] within a slightly different interpretation,
that we present to be self-contained and to connect with
the subsequent derivation of the full number statistics in
following sections.

It is well-known that the key parameter controlling the
properties of cascades of triggered events is the branching
rate n, which is nothing but the average number of first
generation aftershocks, where the average is performed
over all possible triggering event of arbitrary magnitude.
The cases n < 1, n = 1 and n > 1 correspond respectively
to the sub-critical, critical and super-critical regimes, with
the first-two giving stationary time series in the presence
of a stationary immigration of sources and the later giving
explosive time series with a positive probability [44–46].

In branching processes (of which the ETAS model is
an example), we can use the representation that each
shock triggers independently its own aftershocks sequence
(see [51] for a discussion on the two interpretations in
terms of decoupled branches used here or of collective trig-
gering; the two views are equivalent due to the linear sum
over past events and the conditional Poisson process for-
mulation). The independence between different branches
allows us to obtain the average 〈R〉 of the total number
of events (mainshock itself and all its offsprings over all
generations) triggered by an arbitrary mainshock as [52]

〈R〉 = 1 + n + n2 + · · · =
1

1 − n
, (17)

where nk is the contribution of the k-th generation of
aftershocks. Thus, if the average number 〈R〉 of events

per cluster is known, the aftershocks rate can then be ob-
tained as

n =
〈R〉 − 1
〈R〉 . (18)

This simple remark will be useful in the following to derive
an apparent or renormalized branching ratio n(md) and
test its usefulness to describe the full number statistics.

The average number of observable events, which are
triggered by some arbitrary source, is simply 〈R〉 given
by (17) multiplied by the probability Q(md) that an event
is observable:

Q(md) =
∫ ∞

md

P (m)dm, (19)

where P (m) is the probability density function (PDF) of
their random magnitudes (assumed to be the same for
sources and all aftershocks). This gives

〈R〉(md) = 〈R〉Q(md) =
Q(md)
1 − n

. (20)

Consider now the conditional average 〈R̃〉(md) of the num-
ber of observable events within some observable cluster.
It is simply given by

〈R̃〉(md) =
〈R〉(md)
q(md)

=
Q(md)

(1 − n)q(md)
, (21)

as a result of the law of conditional probabilities, using the
fact that q(md) is the probability that the cluster is ob-
servable, as given by (16). This quantity 〈R̃〉(md) can not
be derived as straightforwardly as the average number 〈R〉
over all events obtained with (17). Indeed, an observable
cluster may result from an effective “observable source”
which might belong, for instance, to the 3th or even 7th
generation of the total aftershock sequence. Moreover, it
seems impossible to classify uniquely observable events of
observable clusters as belonging to observable aftershocks
of first, second or kth generations. Therefore, it is not pos-
sible to use for 〈R̃〉(md) the reasonings underlying relation
(17). Notwithstanding this limitation, we can introduce an
effective branching ratio for observed clusters, based on a
natural extension of relation (18). Let us thus define the
effective branching ratio of observable clusters as

n(md) =
〈R̃〉(md) − 1
〈R̃〉(md)

. (22)

With (21), this gives

n(md) =
Q(md) − (1 − n)q(md)

Q(md)
. (23)

Substituting in (23) the r.h.s. of equality (16) yields

n(md) 
 n − ν(md)[1 − Q(md)]
1 − ν(md)[1 − Q(md)]

, (24)

expressing the effective average aftershock rate via the
probability Q(md) that a background event is observable
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and the probability ν(md) that an unobservable back-
ground event triggers some first-generation aftershock. In
the critical case n = 1, expression (24) predicts that the
effective branching ratio n(md) does not depend on md

and is equal to n(md) ≡ 1 as well. This is the consequence
of the fact that, for n = 1, 〈R̃〉 = ∞ and, due to equa-
tion (22), we have n(md) = 1. On the other hand, note
that for n close to 1 but not exactly equal to 1, for in-
stance n = 0.95 shown in Figure 2, the effective branching
ratio n(md) still strongly depends on md.

We stress that the introduction of the effective branch-
ing ratio n(md) in (23) is solely based on average statis-
tical properties of aftershock numbers. It is not obvious
that it also describes the space-time properties of after-
shock cascades. As we show in section 3.6, this turns out
not to be the case, in particular as the time-dependent
Omori law decay of observable events is still controlled by
the true branching ratio n and not by the effective one
n(md).

2.3 Basic properties of the ETAS model

To make further progress and in particular to calculate the
probability q(md) given by (16) that a cluster is observable
and to obtain the effective branching rate n(md) given by
(24), we need to specify the properties of ETAS branching
model. The ETAS model is defined by the following rules.
Each event of magnitude m triggers a Poissonian sequence
of aftershocks characterized by the Poissonian GPF [35]

G1(x; m|κ) = eκµ(m)(z−1), (25)

where κµ(m) is the average number of first generation af-
tershocks triggered by a mainshock of magnitude m, κ is a
numerical constant and µ(m) describes the so-called pro-
ductivity law, i.e., the dependence of the number of first
generation aftershocks number on the mainshock magni-
tude m. Previous empirical studies have established that
the productivity law is approximately exponential [28,47]:

µ(m) = 10α(m−m0). (26)

with an exponent α in the range 0.8–1. Here, m0 is the
lower magnitude threshold below which events are sup-
posed not to be able to trigger any aftershock. The ETAS
model also uses the well-known Gutenberg-Richter (GR)
law for the PDF of earthquake magnitudes

P (m) = b ln(10)10−b(m−m0) , with b ≈ 1, (27)

which are assumed to be independently drawn at each
event occurrence. Averaging the GPF defined by (25) over
all possible random source magnitudes m weighted by the
GR distribution (27), we obtain the GPF of first genera-
tion aftershock numbers triggered by an arbitrary source:

G1(z|κ) = F [κ(1 − z)], (28)

where

F (x) = γ

∫ ∞

1

e−κxy dy

yγ+1
= γyγΓ (−γ, y) , γ =

b

α
,

(29)

and Γ (−γ, y) is the incomplete Gamma function. In the
sequel, we shall use the following power law expansion of
the function F (x)

F (x) 
 1 − γ

γ − 1
x + β xγ ,

β = γΓ (−γ) =
Γ (2 − γ)

γ − 1
. (30)

Thus, for γ → 1+, both coefficients of x and xγ grow
together.

Our previous calculations have shown that this expan-
sion is very accurate for γ ≤ 1.25, which is the relevant
range [35–38].

This expansion (30) allows us to express the main
properties of the statistics of the number of aftershocks.
For this, let us substitute (30) into (28) to obtain the
corresponding approximate expression for the GPF of the
number of first generation aftershocks

G1(z|κ) 
 1 − n(1 − z) + βκγ(1 − z)γ , (31)

where
n = 〈R1〉 =

γκ

γ − 1
(32)

is the average aftershock branching ratio, i.e., the average
〈R1〉 of the total number of first generation aftershocks
triggered by an arbitrary source. Recall that the last term
βκγ(1 − z)γ in the r.h.s. of expression (31) expresses the
property that the distribution P1(r|κ) of the total number
of first generation aftershocks triggered by an arbitrary
source has a power law tail

P1(r|κ) 
 γκγ

r1+γ
. (33)

Expression (33) is the leading asymptotic of the exact ex-
pression

P1(r|κ) =
1
r!

drG1(z|κ)
dzr

∣∣∣
z=0

= γ
κγ

r!
Γ (r − γ, κ), (34)

corresponding to the exact GPF (28) of the number of first
generation aftershocks. Reference [35] has shown that the
power law (33) leads to a PDF of the total number of
aftershocks of all generations which are triggered by an
arbitrary source, which has a fatter tail ∼1/r1+(1/γ), close
to criticality n ≈ 1 .

2.4 Observable and unobservable aftershocks

Let us now consider a different averaged GPF (25) ob-
tained by using a truncated GR law constrained to un-
observable earthquakes (with magnitudes m between m0

and md):

P−(m|md) =

b ln(10)10−b(m−m0)

1 − Q(md)
H(md − m)H(m − m0), (35)
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where H(x) is the unit step (Heaviside) function and
Q(md) = 10−b(md−m0) according to (19) and (27) is
the probability for an earthquake to be observable. Av-
eraging expression (25) over all magnitudes weighted by
P−(m|md) given by (35) yields the GPF of the number of
first-generation aftershocks triggered by an unobservable
event:

G−
1 (z|κ, md) =

F [κ(1 − z)] − Q(md)F [κµ(md)(1 − z)]
1 − Q(md)

.

(36)
Substituting the expansion (30) in (36) yields finally

G−
1 (z|κ, md) 
 1 − ν(md)(1 − z) + O[(1 − z)2], (37)

where the coefficient ν(md) appears here from its defini-
tion as the probability that an unobservable background
event triggers some aftershock. The expansion (37) at this
linear order for the GPF of first-generation aftershocks
triggered by unobservable event is equivalent to saying
that an unobservable event can trigger at most a single
aftershock, in agreement with the approximation used to
obtain (15) and (16).

Expressions (30) and (36) thus yield

ν(md) = n
1 − ρ(md)
1 − Q(md)

, (38)

where
ρ(md) = Q(md)µ(md) = [µ(md)]1−γ (39)

describes the competition between the GR and produc-
tivity laws at the observational magnitude threshold md.
Multiplying (38) by the fraction 1 − Q(md) of unobserv-
able sources yields the average number 〈R−

1 〉 of first gen-
eration aftershocks triggered by an unobservable source.
〈R−

1 〉 can be interpreted as the branching rate n−(md)
of first-generation aftershocks triggered by unobservable
sources:

〈R−
1 〉(md) = n−(md) = n[1 − ρ(md)]. (40)

Note that the GPF (37) does not contain a term of the
form ∼(1 − z)γ as in (31), which was responsible for the
power law tail (33) of the PDF of the total number of first
generation aftershocks. As a consequence, the tail of the
PDF of first-generation aftershocks triggered by unobserv-
able sources is thinner than a power law. The power law
tail (33) is simply due to the interplay between the pro-
ductivity law (26) and the GR law (27) for the sources.
Now, constraining the source magnitudes to be smaller
than md truncates the GR law and thus the PDF of the
number of first-generation events.

Let us now turn to the statistics of first-generation
aftershocks triggered by observable sources. The corre-
sponding GPF is obtained by averaging (25) over all mag-
nitudes weighted by the following modified GR law:

P+(m; md) =
P (m)
Q(md)

H(m − md)

= b ln(10)10−b(m−md)H(m − md). (41)

Fig. 1. Dependence of the PDF’s P+
1 (r|κ, md) and

P−
1 (r|κ, md) as a function of number r for γ = 1.1, n = 0.9 and

for µ(md) = 10 and 50, illustrating the presence of a power law
tail ∼r−γ−1 for first-generation aftershocks triggered by ob-
servable sources and of fast decaying tails for first-generation
aftershocks triggered by unobservable sources (of magnitude
less than md).

This leads to

G+
1 (z|κ, md) = F [κµ(md)(1 − z)]. (42)

Note that expression (42) differs from the GPF (28) of the
total number of first-generation events only through the
renormalization

κ → κ(md) = κµ(md). (43)

This allows us to interpret the average number of first-
generation aftershocks triggered by an arbitrary observ-
able source as an effective branching rate n+(md) equal
to

〈R+
1 〉 = n+(md) = nκ(md)Q(md) = nρ(md), (44)

where ρ(md) is defined by (39). Not surprisingly, the PDF
of the number of first-generation aftershocks triggered by
observable background events has a power law tail,

P+
1 (r|κ, md) =

1
r!

drG+
1 (z|κ, md)

dzr

∣∣∣
z=0


 γ
κγ

r1+γ
, (45)

analogous to (33).
These different results are summarized in Figure 1

which shows the PDF’s P+
1 (r|κ, md) and P−

1 (r|κ, md) as
a function of the number r of events obtained from the
exact relation (34), for two different values of µ(md).

2.5 Properties of effective aftershock rates

We are now armed to discuss in the framework of the
ETAS model the properties of the probability q(md) given
by (16) for a cluster to be observable and the correspond-
ing expression (24) for the effective branching rate n(md)
of observable clusters. Note again that the expansion (37)
at this linear order writes that an unobservable event can
trigger at most a single aftershock, in agreement with the
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approximation used to obtain (15) and (16). This entitles
us to substitute (38) into (16) and (24) to obtain

q(md) =
Q(md)

1 − n[1 − ρ(md)]
, (46)

and

n(md) =
nρ(md)

1 − n[1 − ρ(md)]
, (47)

where ρ(md) is defined by (39). In the following sections,
these two relations (46) and (47) will be derived from the
exact equations obeyed by the GPF’s of the number of
aftershocks over all generations. In the mean time, let us
discuss their properties and seismological implications.

Using the notations (40) and (44), we can rewrite the
effective rate (47) of observable clusters in the form

n(md) =
n+(md)

1 − n−(md)
, (48)

and interpret it as the rate n+(md) of aftershocks trig-
gered by observable sources, amplified by the impact of
aftershocks triggered by unobservable sources since the
denominator in (46) and (47) describes the influence of
aftershocks triggered by unobservable sources.

First, notice that, in the critical case n = 1, we have
n(md) ≡ 1. Thus, the critical regime for all events is also
critical for observable events. In this case, the probability
q(md) that a cluster is observable is given by

q(md) = µ−1(md) (n = 1), (49)

and decreases as the observation threshold md increases,
which parallels the intensity of effective observable sources
given by (11).

Two cases are worth discussing. For

n−(md) = n[1 − ρ(md)]  1 , (50)

which corresponds to a negligible productivity of unob-
servable events, then the impact of unobserved sources is
small and

q(md) 
 Q(md), n(md) 
 n+(md) = nρ(md), (51)

as if all aftershocks, which are triggered by observable
sources, were observable.

In contrast, for

ρ(md)  1, (52)

we have

q(md) 
 Q(md)
1 − n

, n(md) 
 nρ(md)
1 − n

, (53)

where the factor 1/(1 − n), quantifying the impact of
clusters triggered by unobservable background events, be-
comes predominant.

Expression (47) can be rewritten as

n(md) =
1

1 + 1−n
n [µ(md)]γ−1

. (54)

Fig. 2. Dependence of the effective rate n(md) given by (47)
and (54) for α = 0.8 and b = 1 (γ = 1.25) for different value of
n: n = 0.7; 0.8; 0.9; 0.95 from bottom to top.

Fig. 3. Dependence of effective rate n(md) given by (47) and
(54) as a function of the branching ratio n of all first-generation
events, for α = 0.8 and b = 1 and several values of md − m0:
md − m0 = 1; 2; 3; 4 from bottom to top.

Thus, for

md − m0  ∆∗ ≡ 1
b − α

log10

(
n

1 − n

)
, (55)

the effective aftershocks rate is critical: n(md) 
 n. For
example, if n = 0.9, b = 1 and α = 0.8 we have ∆∗ 

4.77. Figure 2 (respectively 3) shows the dependence of the
effective rate n(md) as a function of md−m0 (respectively
n) for various n (respectively md − m0).

2.6 Correspondence between the present formalism
and Sornette-Werner representation [51]

At this point, the astute reader will have noticed that the
expression (47) for the effective rate of observable events
of first-generation is not the same as expression (10) of
[51], which also gives an apparent branching ratio denoted
na for observable aftershocks of the first generation. Our
present form (47) for n(md) departs from expression (10)
of [51] for na via the denominator, that is, by the fact that
n−(md) defined in (50) is not zero. The two approaches
are actually equivalent as we now explain. Expression (10)
of [51] defines an apparent branching rate na as only due
to observable sources while n(md) given by (47) takes also
into account the unobservable sources on observable af-
tershocks. In other words, n(md) given by (47) counts the
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effect of unobserved sources in the production of first gen-
eration events and thus describes the average number of
first-generation daughters from unobservable aftershocks
which are themselves “sources” for the future generations.
In contrast, Sornette and Werner construct a representa-
tion in which the introduction of the observational cut-
off md > m0 not only renormalizes n into na given by
their equation (10) but also introduces a renormalization
of the spontaneous source rate [51]: for each real observ-
able spontaneous sources, there are many apparent spon-
taneous sources which result from the fact that an event
triggered by an unobservable previous aftershock is con-
sidered a spontaneous source since one can not track its
ancestor. The two approaches can thus be summarized as
follows:
– Sornette–Werner:

{n, 1 spontaneous source} → {na = nρ(md),
Sa = Nobs(n − na) spontaneous sources} , (56)

where Nobs is the total number of observed aftershocks;
– present work:

{n, 1 spontaneous source} → {n(md) =
nρ(md)

1 − n[1 − ρ(md)]
, 1 spontaneous source}. (57)

Note that the fraction fa = Sa/Nobs of apparent sources
among all observed events given by expression (23) of [51]
can be written

fa = Sa/Nobs = n − na = n − nρ(md) = n−(md), (58)

where the last equality results from definition (50). This
provides a physically intuitive interpretation of n−(md).
Expression (47) can thus be written

n(md) =
na

1 − fa
= na(1 + fa + f2

a + ...). (59)

This formula clarifies completely the relationship between
Sornette-Werner’s formation and the present one: the first
term na in the r.h.s. of (59) corresponds to the average
number of daughters of first-generation due to an observ-
able initial source; The second term nafa corresponds to
the average number of daughters of first-generation which
are due to an apparent observable source which is trig-
gered from a first-generation unobservable aftershock of
the initial spontaneous source. The third term naf2

a cor-
responds to the average number of daughters of first-
generation which are due to an apparent source which was
itself triggered by an apparent source of a first-generation
unobserved aftershock of the initial spontaneous source;
and so on... This reasoning demonstrates that the two
formulations are physically equivalent, even though they
have been obtained by different physical arguments.

3 Statistical description of observable events

Until now, we have explored some properties of the frac-
tion q(md) of observable clusters and its corresponding

effective observable aftershock rate n(md), using a physi-
cally transparent but non-rigorous approach based on the
properties of first-generation aftershocks triggered by ob-
servable and unobservable sources. In the following, we
study the full statistical properties of observable events
in large time window using the GPF’s of the number of
events of all generations. It is again important to stress
that our results apply only to the statistics of clusters
and not to the time-dependent properties of aftershock
sequences, as shown in Section 3.6.

3.1 Derivation of the GPF of observable events

We start by the remark that the GPF of a single source of
magnitude m, which takes into account the observability
of the source, is equal to

zH(m−md) = 1 + (z − 1)H(m − md) =

{
1 , m < md

z , m > md.

(60)
Let us define G(z; m, md) as the GPF of the number of
observable aftershocks of all generations which are trig-
gered by a source (which can be observable or unobserv-
able). Multiplying G(z; m, md) by (60) yields the GPF
Θ(z; m, md) of the number of observable events triggered
by a source of given magnitude m:

Θ(z; m, md) = zH(m−md)G(z; m, md). (61)

Averaging this expression over all possible source magni-
tudes weighted by the GR law (27) gives the GPF

Θ(z; md) =
∫ ∞

m0

Θ(z; m, md)P (m)dm (62)

of the total number of all observable events, which include
all observable sources and all their observable aftershocks
of all generations. Θ(z; md) can be expressed as

Θ(z; md) = G(z; md|m0) + (z − 1)G(z; md|md) (63)

where

G(z; md|x) =
∫ ∞

x

G(z; m, md)P (m)dm. (64)

Thus, determining the GPF Θ(z; md) requires to calculate
the GPF G(z; m, md) of the number of all observable af-
tershocks of all generations belonging to the same cluster.
The later can be obtained by using the statistical indepen-
dence of sources and aftershocks magnitudes, which leads
to replacing z within the exponential of the r.h.s. of (25)
by Θ(z; md), which yields

G(z; m, md) = eκµ(m)[Θ(z;md)−1]. (65)

Substituting (65) and (27) into (64) yields

G(z; md|x) = Q(x)F (κµ(x)[1 − Θ(z; md)]). (66)
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Using this expression (66) to express the terms in the r.h.s.
of (63) leads to the following equation determining the
sought GPF Θ(z; md):

Θ(z; md) = F (κ[1 − Θ(z; md)])
+ (z − 1)Q(md)F (κµ(md)[1 − Θ(z; md)]). (67)

For md = m0 (Q = µ = 1) such that all events can be
observed, this equation reduces to the standard functional
equation

Θ(z|κ) = zF (κ[1 − Θ(z|κ)]) = zG1(Θ(z|κ)|κ), (68)

where G1(z|κ) is the GPF given by (28) of the number
of first-generation aftershocks while Θ(z|κ) = Θ(z; m0) is
the GPF of the total number of event in a cluster. We
make explicit the dependence on the parameter κ because
it is going to play a crucial role in the following discussion.

There is a physically natural partition of the GPF
Θ(z; md) given by (67) according to

Θ(z; md) = G−(z; md) + zG+(z; md), (69)

where

G−(z; md) = F (κ[1 − Θ(z; md)])
− Q(md)F (κµ(md)[1 − Θ(z; md)]) (70)

describes the statistics of observable aftershocks triggered
by an unobservable event, while

G+(z; md) = Q(md)F (κµ(md)[1 − Θ(z; md)]) (71)

describes the statistics of observable aftershocks triggered
by an observable event.

There are a few exact consequences of rela-
tions (67)–(71) which can now be obtained. Consider the
average number of events over all generations of a given
cluster, given by definition by

〈R〉(md) =
dΘ(z; md)

dz

∣∣∣
z=1

. (72)

Using equation (67), it is easy to show that it satisfies the
equation

〈R〉(md) = n〈R〉(md) + Q(md), (73)

whose solution (20) was already obtained from a direct
probabilistic argument. By construction, 〈R〉(md) given
by (20) is equal to the sum

〈R〉(md) = Q(md) + 〈R〉+(md) + 〈R〉−(md) (74)

of the contributions of observable events and aftershocks,
which are triggered by both observable and unobservable
events, with

〈R〉±(md) =
dΘ±(z; md)

dz

∣∣∣
z=1

. (75)

It follows from (70), (71) and (75) that

〈R〉+(md) = nρ(md)〈R〉(md) = n+(md)〈R〉(md), (76)

Fig. 4. Dependence of the rates n±(md) quantifying the rel-
ative impact of aftershocks triggered by observable (+) versus
unobservable (−) events, as a function of md−m0, for α = 0.8,
b = 1, and n = 0.9.

and

〈R〉−(md) = n[1 − ρ(md)]〈R〉(md) = n−(md)〈R〉(md).
(77)

These two relations confirm the physical meaning of the
rates n±(md) defined in (40) and (44), which quantify the
relative impact of aftershocks triggered by observable ver-
sus unobservable events. Expressions (74), (76) and (77)
show that the rates n±(md) are the fractions of aftershocks
of all generations which are triggered by observable (+)
versus unobservable (−) events.

Figure 4 plots these two rates n±(md) as a function
of md − m0 for α = 0.8, b = 1, n = 0.9, showing that
the impact of unobserved events may easily dominate for
quite reasonable values of the model parameters.

3.2 Fraction of observable clusters

One of the key parameters governing the statistics of
windowed observable events is the fraction q(md) defined
by (6) of observable clusters. Equation (67) allows us to
calculate it exactly. Indeed, it is easy to show that expres-
sion (67) implies that q(md) is solution of the equation

q(md) = 1 − F [κq(md)] + Q(md)F [κµ(md)q(md)]. (78)

Noticing that Q(md) = [µ(md)]−γ ≡ µ−γ , we can
rewrite (78) in the form

Ψ [q(md)] = 0, (79)

where

Ψ(x) = 1 − x − F (κx) + µ−γF (κµx). (80)

A good approximate solution of (79) can be obtained by
substituting the polynomial approximation (30) for F to
obtain

Ψ(x) 
 µ−γ − x[1 − n(1 − µ1−γ)]. (81)

The corresponding solution of (79) then reads

q(md) =
1

nµ + (1 − n)µγ
, (82)
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Fig. 5. Dependence of the ratio of the approximation (82)
divided by the numerical solution of the exact equation (78),
as a function of md − m0, demonstrating the good accuracy
of the approximate expression (82), for n = 0.9, b = 1: α =
0.7; 0.8; 0.9 from top to bottom.

which is equivalent to expression (46) derived above using
an intuitive nonrigorous reasoning. In contrast, expres-
sion (82) and thus (46) is now obtained as an approxi-
mate solution of the exact equation (78). The accuracy
of this approximation (82) (or (46)) can thus be checked
by comparing it with the numerical solution of the ex-
act equation (78). Correlatively, this also directly check
the quality of expression (47). Figure 5 shows the ratio of
the approximation (82) divided by the numerical solution
of the exact equation (78), as a function of md − m0 for
n = 0.9, b = 1 and three values of α = 0.7, 0.8, 0.9. One
can observe that the quality of the approximation (82)
improves as α gets closer to 1.

3.3 Self-similarity of the statistics of observable events

We now have the tools to calculate the conditional GPF
Θ̃(z; md) defined by (8) of the total number of observable
events within an observable cluster. Substituting (7) into
(67) yields the equation for Θ̃(z; md):

ϕ(Θ̃; md) = zF (κ(md)(1 − Θ̃)), (83)

where
κ(md) = κµ(md)q(md), (84)

and
ϕ(x; md) =

Ψ(q(md)(1 − x))
Q(md)

. (85)

Definition (80) and equation (79) imply that the following
identities are true

ϕ(0; md) ≡ 0 , ϕ(1; md) ≡ 1. (86)

Using (80) and the approximate expression (30), we obtain
the linear approximation

ϕ(x; md) 
 ϕ1(x) , ϕ1(x) = x, (87)

which is consistent with (86). Then, substituting (87)
into (83) yields an approximate equation for the GPF
Θ̃(z; md):

Θ̃(z; md) 
 zF (κ(md)[1 − Θ̃(z; md)]). (88)

Fig. 6. Dependence of the difference ∆1(x;md) given by (89)
as a function of the variable x, for n = 0.9, γ = 1.25 and several
values of md − m0 = 1; 2; 3; 4 (four upper curves from top to
bottom). The group of almost undistinguishable curves at the
bottom of the graph corresponds to n = 0.9, md−m0 = 1; 2; 3; 4
and γ = 1.1.

We can check the accuracy of the linear approxima-
tion (87), and thus its consequence for Θ̃(z; md) given
by (88) by comparing the linear function ϕ1(x) = x of
(87) with the exact one given by (83). Figure 6 shows the
difference

∆1(x; md) = ϕ(x; md) − x, (89)

where ϕ(x; md)− is given by (83), as a function of the
variable x, for n = 0.9, γ = 1.25 and γ = 1.1 and several
values of md − m0. This figure confirms the good accu-
racy of the linear approximation. The two following sub-
sections will extract the consequence of this formulation
for the distribution of aftershock numbers and will quan-
tify the impact of the next order correction to the linear
approximation (87).

Note that equation (88) coincides, after the applica-
tion of the renormalization (43) where κ(md) is now given
by expression (84), with the equation (68) for the GPF
Θ(z|κ) of the total number of events within an arbitrary
cluster. This has an important consequence for the phys-
ical understanding of seismicity according to the ETAS
model: as long as the linear approximation (87) is appli-
cable, the statistics of the number of observable events
within observable clusters is identical, up to the renor-
malization (43), to the statistics of the total number of
events within an arbitrary cluster in which all events can
be observed.

This can be restated as the following self-similar prop-
erty for the statistical properties of observable clusters:

Θ̃(z; md) 
 Θ(z|κ(md)). (90)

This self-similarity property means that the statistics of
observable windowed events within large time windows is
identical after the correspondence

ω → ω(md) = ωq(md),

n → n(md) =
γκ(md)
γ − 1

, (91)

to the statistics of the total number of windowed events.
The effective branching rate n(md) defined in (91) coin-
cides, using the expression (84) for κ(md) and (82) for
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q(md), with expression (47) that we have previously ob-
tained for the effective rate of observable aftershocks. This
shows again that the intuitive probabilistic reasoning of
Section 2.5 on effective aftershock rates is equivalent to
the linear approximation (87) for the GPF. As we are go-
ing to probe in greater depth, this suggests that the self-
similar property (90) is a resilient and general feature of
the ETAS model.

3.4 Distribution of the number of observable events

We now derive the consequences of the above results for
the distribution of the numbers of observable events.

Let us denote by P̃(r; md) the probability correspond-
ing to the GPF Θ̃(z; md) defined by (8), that there are
r observable events in a given observable cluster. Sim-
ilarly, we denote P(r; md) the distribution of the num-
bers of observable events within an arbitrary cluster cor-
responding to the GPF Θ(z; md). The two GPF Θ̃(z; md)
and Θ(z; md) are linked through equation (7). It follows
from (7) and (88) that, within the domain of application
of the linear approximation (87), these two probabilities
can be expressed in terms of the probability P(r|κ) of the
total number of events of an arbitrary cluster via the fol-
lowing self-similar relations

P̃(r; md) 
 P(r|κ(md)),
P(r; md) 
 q(md)P(r|κ(md)), r � 1. (92)

Thus, the statistical properties of observable events are
known from those of all events via the scaling rela-
tions (92) (within the linear approximation (87) of the
GPF). The self-similar properties (90) and (92) mean that,
for the statistical properties, the ETAS model is renormal-
ized onto itself under the transformation m0 → md, with
just a renormalization from κ to κ(md) and, as a conse-
quence, a renormalization of the branching ratio from n to
n(md). Our present analysis thus confirms for the full sta-
tistical properties the results obtained previously, based
solely on the average seismic rates [51].

The statistics properties of the total number of events
in individual aftershock clusters (without the constraint
of observability) has been derived in our previous paper
[35,35]. Therefore, we just need to recall briefly some of
its key properties which are useful for understanding the
statistics of observable events.

Recall that the probability density P(r|κ) is given by
the Cauchy integral [38]

P(r|κ) =
1

2πir

∮

C

dΘ(z|κ)
zr

, (93)

where C is sufficiently small contour enveloping the ori-
gin z = 0, and Θ(z|κ) is solution of the functional equa-
tion (68). The main difficulty in the calculation of the
integral (93) is that the GPF Θ(z|κ) is defined only im-
plicitly, via the solution of equation (68). To overcome this

obstacle, we perform a change of variable and use the new
integration variable y = Θ(z|κ). It follows from (68) that

z =
y

G1(y|κ)
, (94)

which yields the explicit integral for P(r|κ):

P(r|κ) =
1

2πir

∮

C′

Gr
1(y|κ)

dy

yr
, (95)

where C′ is some small contour in the complex plane y
enveloping the origin y = 0.

It is interesting to point out that relation (95) has
an intuitive probabilistic interpretation, as it can be ex-
pressed as

P(r|κ) =
1
r

Pr (Yr = r − 1), (96)

where

Ys =
s∑

k=1

Uk, (97)

and {U1, U2, . . . } are mutually independent random in-
tegers with GPF G1(z|κ) given by (28) with (31). In
the relevant regime for earthquakes for which, probably,
1 < γ < 2, and for r � 1, the PDF of the sum (97) tends
asymptotically to

Pr (Yr = s) =
1

(νr)1/γ
�γ

(
s − nr

(νr)1/γ

)
,

ν = −κγΓ (1 − γ), (98)

where �γ(x) is the stable Lévy distribution such that its
two-sided Laplace transform is equal to

∫ ∞

−∞
�γ(x)e−uxdx = euγ

. (99)

This Lévy distribution has the following properties

�γ(x) ∼ x−γ−1

Γ (−γ)
(x → ∞) , �γ(0) =

1
γΓ (1 − 1/γ)

.

(100)
One can calculate �γ(x) numerically for any value 1 < γ <
2 using, for instance, the following integral representation

�γ(x) =
1
π

∫ ∞

0

exp
[
−uγ + ux cos

(
π

γ

)]

× sin
[
ux sin

(
π

γ

)
+

π

γ

]
du. (101)

The asymptotic expression for the probability (96) corre-
sponding to (98) is

P(r|κ) 
 1
r(νr)1/γ

�γ

(
r(1 − n) − 1

(νr)1/γ

)
(r � 1).

(102)



A. Saichev and D. Sornette: Renormalization of branching models 455

Fig. 7. Dependence of the cross-over value r∗(md) separating
the two power laws (103) and (104) for the statistics of the
number of observable events, for γ = 1.25 and n = 0.9; 0.8; 0.7
(top to bottom).

When the average branching ratio n defined by (18) is
close to 1, equation (102) with (100) predict the existence
of two characteristic power laws for the probability P(r|κ):

P(r|κ) ∼ r−1−1/γ (r  r∗), (103)

and
P(r|κ) ∼ r−1−γ (r � r∗), (104)

where

r∗ = ν1/(γ−1)

(
1

1 − n

)γ/(γ−1)

. (105)

The power law (104) reflects the intrinsic distribution of
the number of first-generation aftershocks given by rela-
tion (33), while the heavier power law tail (103) reflects the
effects of cascades over many generations in the branching
aftershocks triggering process [35]. See Figure 2 in refer-
ence [35] for a visualization of the two power laws (103)
and (104) and their cross-over.

Then, substituting in (105) the effective branching rate
n(md) for observable clusters, we obtain the dependence
of the cross-over value r∗(md) separating the two power
laws (103) and (104) for the statistics of the number of
observable events, as a function of the threshold magni-
tude md − m0. Figure 7 shows r∗(md) as a function of
md − m0 for γ = 1.25 and several values of n. One can
observe a fast decrease of r∗(md) with md−m0, which im-
plies that increasing the observation magnitude threshold
md amounts to deviate more and more from criticality, as
shown also directly in Figure 2.

3.5 Deviations from self-similarity

All the results above on the self-similarity of the statistics
of observable events expressed by relations (90) and (92)
can be viewed as the consequence of the linear approxi-
mation (87). It is thus important to explore how strong
can be the deviations from self-similarity resulting from
the properties of the exact equation (83) for the GPF Θ̃
of the number of observable events within an observable
cluster. In this goal, we rewrite equation (83) in the form

Θ̃ = zG̃1(Θ̃; md), (106)

where
G̃1(z; md) = G1(z|κ(md)g(z; md), (107)

and
g(z; md) =

z

ϕ(z; md)
. (108)

One can interpret (106) and (107) as describing some
branching process such that the GPF of the number of
first-generation aftershocks is equal to G̃1(z; md). In other
words, the random number R1(md) of first-generation af-
tershocks in this new branching model is equal to the sum
of the two statistically independent random integers

R1(md) = U(md) + V (md), (109)

where U(md) has the self-similar GPF G1(z|κ(md), while
V (md) has the GPF g(z; md).

Using (95), (96) and (107), we immediately obtain the
exact integral representation of the PDF of the number of
observable events in an observable cluster:

P(r; md) =
1

2πir

∮

C′

Gr
1[z|κ(md)]gr(y; md)

dy

yr
. (110)

Its corresponding probabilistic representation reads

P̃(r; md) =
1
r

Pr (Yr = r − 1), (111)

where

Ys =
s∑

k=1

(Uk + Vk). (112)

The random integers {U1, U2, . . . } have the GPF
G1[z|κ(md)], while the random numbers {V1, V2, . . . } are
random integers which are mutually statistically inde-
pendent from each other (and from U ’s) with the GPF
g(y; md) given by (108). As the transformation m0 → md

is equivalent to a decimation step in the language of
the renormalization group (see [54] and [53] as well as
Chap. 11 of [55] for pedagogical introductions), the ran-
dom variables {V1, V2, . . . } with their GPF g(y; md) cor-
respond to a new relevant direction (branching process
different from the time-independent ETAS) in the space
of branching processes.

To obtain the statistical properties of the random inte-
gers V , consider the quadratic approximation of the func-
tion ϕ(x; md) defined by (85):

ϕ(x; md) 
 ϕ2(x; md),
ϕ2(x; md) = x + η(md)x(1 − x). (113)

This second-order approximation is again consistent with
the identities (86). Here,

η(md) = 4∆1(1/2; md), (114)

where ∆1 is defined in (89). Figure 8 shows the difference

∆2(x; md) = ϕ(x; md) − ϕ2(x; md), (115)
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Fig. 8. Dependence of the difference ∆2(x;md) defined in
(115) as a function of x for the same parameters as in Figure 6,
demonstrating the high accuracy of the quadratic approxima-
tion (113).

as a function of x for different values of md − m0 for
the same parameters as for Figure 6, and for γ 1.1 and
1.25. Comparison between Figures 6 and 8 demonstrate
the large improvement from the linear to the quadratic
approximation (113).

Substituting (113) into (108) yields the approximate
GPF of the auxiliary random integers V as

g(z; md) =
1

1 + η(md)(1 − z)
. (116)

This GPF means that V has a geometric distribution with
the following average and variance

〈V 〉 = η , σ2
V = η(η + 1). (117)

Thus, if η  1, the random variable V has a small impact
on the statistics of the number of observable events. In
this case, we obtain the leading asymptotical contribution
of the variable V to the statistics of observable events
by using a power law expansion for the GPF G̃1(z; md),
similar to (31):

G̃1(z; md) 
 1 + ñ(md)(1− z) + βκγ(md)(1− z)γ , (118)

where
ñ(md) = n(md) + η(md). (119)

Expression (118) shows that the main contribution of the
random integer V resulting from the first-order correction
to the linear approximation (87) is to introduce a small
shift (for η  1) equal to η(md) to the effective branching
rate n(md) obtained within the linear approximation (87).
Figure 9 shows the dependence of this shift η(md) as a
function of md−m0 for different values of γ. Since n(md) is
typically in the range 0.5–1, this shows that the corrections
are no more than about 10% in the value of the effective
branching rate for observable events.

3.6 Un-renormalized branching ratio
of the time-dependent properties

We have stressed several times that the renormalization of
the branching ratio n into an effective value n(md) given

Fig. 9. Dependence of the shift η(md) to the effective branch-
ing rate for observable events as a function of md − m0 for
different values of γ and for n = 0.9.

by (91) has been demonstrated only for the global sta-
tistical properties of the ETAS model. It turns out that
the time-dependent properties of a catalog of observable
events with magnitudes m > md are not described by
n(md) but by the un-renormalized true branching ratio n.
Roughly speaking, because the magnitude of an earth-
quake is randomly chosen in the ETAS model, observed
and unobserved events have the same distribution in time
and space. Therefore, the branching parameter n in the
ETAS model controls the time decay of the aftershock
rate after a mainshock, and the effect of changing the lo-
cal magnitude cut-off from m0 to md is only to rescale the
seismicity rate by a factor Q(md) defined in (19), without
changing the decay of aftershocks with time. Thus, while
the ETAS branching model is renormalized onto itself by
changing m0 into md and n into n(md) with respect to
its statistical properties, the time-dependent properties of
observable events with m > md are controlled by the un-
renormalized branching ratio n, as we now demonstrate
explicitly.

We start from the exact equation for the generat-
ing probability function (GPF) Θ(z; m, md, t) of the total
number until time t of observable aftershocks triggered
after a main earthquake that occurred at time 0 which
magnitude m. This equation has the form of equation (13)
in [56] extended in the time domain:

Θ(z; m, md, t) =

exp
[ ∫ ∞

m0

dm′
∫ t

0

dt′λ(m, m′, t′)(Θ(z, m′, md, t − t′) − 1)

+ (z − 1)
∫ ∞

md

dm′
∫ t

0

dt′λ(m, m′, t′)Θ(z, m′, md, t − t′)
]
.

(120)

λ(m, m′, t′)dt′ is the number of first-generation events of
magnitude m′ triggered between time t′ and t′ + dt′ by
an event of magnitude m. The first (resp. second) dou-
ble integral in the exponential accounts for unobservable
(resp. observable) aftershocks which trigger observable
events. The corresponding average number of aftershocks
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satisfies the linear integral equation

〈R〉(m, md, t) =
∫ ∞

m0

dm′
∫ t

0

dt′λ(m, m′, t′)〈R〉(m′, md, t − t′)

+ 〈R1〉(m, md, t) , (121)

where

〈R1〉(m, md, t) =
∫ ∞

md

dm′
∫ t

0

dt′λ(m, m′, t′) (122)

is the average number of observable aftershocks of first
generation triggered till time t. Note that the above equa-
tions are very general and hold for any branching process.

The ETAS model is defined by

λ(m, m′, t) = κµ(m)p(m′)Φ(t), (123)

where µ(m) is the productivity law (26), p(m) is the
Gutenberg-Richter (GR) law for the PDF of earthquake
magnitudes defined by (27) and Φ(t) is the bare Omori
law (whose expression is not needed here). Using (123) in
(121) leads to

〈R〉(m, md, t) = κµ(m)

×
∫ ∞

m0

dm′
∫ t

0

dt′p(m′)Φ(t′)〈R〉(m′, md, t − t′)

+ 〈R1〉(m, md, t) (124)

and
〈R1〉(m, md, t) = κµ(m)Q(md)F (t), (125)

where

F (t) =
∫ t

0

Φ(t′)dt′ and Q(md) =
∫ ∞

md

p(m′)dm′.

(126)
The lower limit m0 in the integrals of equations (121) and
(124) means that we take into account the contribution of
observable aftershocks which are triggered by unobserv-
able progenitors. For m < md, 〈R〉(m, md, t) describes the
average number of observable aftershocks, which are trig-
gered by an unobservable mainshock.

To solve equation (124), we apply the Laplace trans-
form to it and obtain the following equation

R̂(m, md, s) =

κµ(m)Φ̂(s)
∫ ∞

m0

p(m′)R̂(m′, md, s)dm′

+ κµ(m)Q(md)
1
s
Φ̂(s) , (127)

where

R̂(m, md, s) =
∫ ∞

0

e−st〈R〉(m, md, t)dt,

Φ̂(s) =
∫ ∞

0

e−stΦ(t)dt. (128)

Let us introduce the auxiliary function

Ŵ (md, s) =
∫ ∞

m0

p(m′)R̂(m′, md, s)dm′, (129)

which is nothing but the average number of observable
aftershocks, which are triggered by a mainshock of ran-
dom magnitude m. It follows from (127) that Ŵ (md, s) is
solution of the algebraic equation

Ŵ (md, s) = n Φ̂(s)Ŵ (md, s) + nQ(md)
1
s
Φ̂(s), (130)

where
n =

∫ ∞

0

µ(m)p(m)dm =
κγ

γ − 1
(131)

is the branching ratio previously introduced in (18). The
solution of equation (130) is

Ŵ (md, s) = Q(md)
1
s
Φ̂(s)

n

1 − n ˆΦ(s)
. (132)

Substituting it into (127) yields

R̂(m, md, s) = Q(md)
1
s
Φ̂(s)

κµ(m)
1 − nΦ̂(s)

. (133)

Thus, R̂(m, md, s) differs from R̂(m, m0, s), which takes
into account all aftershocks, only by the factor Q(md) de-
fined in (126). In other words, the following relation is
true

〈R〉(m, md, t) ≡ Q(md)〈R〉(m, t), (134)

where 〈R〉(m, t) is the average number of aftershocks with
magnitude above m0, which are triggered by a main-
shock of magnitude m. Thus, the time-dependence of
〈R〉(m, md, t) is the same as that of 〈R〉(m, t). Since
the time-dependence of 〈R〉(m, t) is controlled by the
characteristic time scale t∗ ∼ 1/(1 − n)1/θ (for Φ(t) ∼
1/t1+θ) [44], we conclude that the un-renormalized true
branching ratio n (and not n(md)) controls the time-
dependent properties of the ETAS model.

4 Conclusion

We have shown that, to a good approximation, the statis-
tical properties of catalogs generated by the ETAS model
which are restricted to earthquakes above an observable
magnitude threshold md > m0 are the same as those
of catalogs generated with another ETAS model with a
renormalized effective branching ratio n(md) given in (91).
Our present analysis thus confirms, for the full statisti-
cal properties, the results obtained previously in refer-
ence [51], based solely on the average seismic rates (the
first-order moment of the statistics). However, our analy-
sis also demonstrates that this renormalization is not ex-
act, as there are small corrections which can be system-
atically calculated, in terms of additional contributions
that can be mapped onto a different branching model
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(a new relevant direction in the language of the renormal-
ization group). However, for practical applications, due
to the strong stochasticity of the ETAS branching model,
these deviations from exact self-similarity will be difficult
to observe. In addition, we have shown that the effec-
tive parameter n(md) cannot be interpreted as a genuine
renormalized branching ratio, because observed and un-
observed events have the same distribution in time and
space, and thus have the same branching parameter n
which controls the time decay of aftershock rate after a
mainshock. Thus, the ETAS model is not renormalized
onto itself by changing m0 into md, and n into n(md)
with respect to all its space-time properties.

We thank M. Werner for stimulation discussions. This work
was partially supported by NSF-EAR02-30429, and by the
Southern California Earthquake Center (SCEC) SCEC is
funded by NSF Cooperative Agreement EAR-0106924 and
USGS Cooperative Agreement 02HQAG0008. The SCEC con-
tribution number for this paper is 928.

Appendix on the formalism of generating
probability functions (GPF)

In this Appendix, we recall the definition of the GPF of
some non-negative random integer R (it may be, for in-
stance, the number of earthquakes within some space-time
window) and illustrate possible applications of the GPF
formalism to explore the statistical properties of branch-
ing processes. Let us denote by P (r) the probability that
the random number R is equal to some r. Then, by defi-
nition, the GPF of the random integer R is equal to the
series

G(z) = P (0)+ P (1)z + P (2)z2 + · · · =
∞∑

r=0

P (r)zr. (135)

As a first illustration, consider the case where the ran-
dom integer R is distributed according to Poisson statis-
tics with a mean value 〈R〉 = ν, such that

P (r) =
νr

r!
e−ν . (136)

Then, the summation of the series in (135) gives

G(z) = eν(z−1). (137)

One interest of the GPF formalism is that, if one knows
the GPF G(z) of some random integer R, one can then
calculate the corresponding probabilities P (r) using

P (r) =
1
r!

drG(z)
dzr

∣∣∣∣
z=0

. (138)

In some cases, especially for numerical calculations, it
is more convenient to use the Cauchy integral formula
(which is equivalent to (138))

P (r) =
1

2πi

∮

C
G(z)

dz

zr+1
, (139)

where C is an arbitrary contour which lies inside the circle
|z| � 1 in the complex plane z and envelops the origin
z = 0. From the knowledge of the GPF G(z), one can also
obtain easily all the statistical moments of the random
integer R. For instance, the average of the random integer
R is given by

〈R〉 ≡
∞∑

r=1

rP (r) =
dG(z)

dz

∣∣∣∣
z=1

. (140)

The GPF formalism is particular useful to study the
statistical properties of branching processes, because it
uses optimally the independence between the different
branches. Consider the following branching process in
which some event triggers a random number R1 of other
(first-generation) events, where the random number R1

is described by a probability function associated with the
GPF G1(z). Let in turn each first-generation event trigger
independently random second-generation events, whose
number per first-generation event is also characterized by
the same GPF G1(z). Then, due to the independence of
the random numbers of events of first and second genera-
tions, the GPF of the total number of events of both first-
and second-generation events is equal to

G2(z) = G1[zG1(z)]. (141)

Let in turn each second-generation event trigger indepen-
dently random events, whose numbers are again charac-
terized by the same GPF G1(z), and so on over the infinite
range of all possible generations. Then, the GPF G(z) of
the total number of events over all generations satisfies
the functional equation

G(z) = G1(zG(z)). (142)

As an illustration, let us find the average of the total num-
ber of triggered events over all generations. Using relation
(140) and the normalizing condition G(z = 1) = 1, differ-
entiating equation (142) with respect to z, we obtain

〈R〉 = n(1 + 〈R〉) → 〈R〉 =
n

1 − n
, (143)

where

n =
dG1(z)

dz

∣∣∣∣
z=1

(144)

is the average number of first generation events. If n < 1,
then one call the branching process subcritical. If n = 1,
it is critical and supercritical (explosive) for n > 1.
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